霉菌毒素是谷物或飼料中霉菌生長(zhǎng)產(chǎn)生的次級(jí)代謝產(chǎn)物,是各種植物和環(huán)境因素相關(guān)的應(yīng)激反應(yīng)或霉菌生長(zhǎng)條件的改變?cè)斐傻摹T谒a(chǎn)養(yǎng)殖業(yè)方面對(duì)霉菌毒素污染危害的認(rèn)識(shí)已經(jīng)越來(lái)越深人,不論是飼料生產(chǎn)企業(yè)還是魚(yú)蝦養(yǎng)殖者都認(rèn)識(shí)到了霉菌毒素對(duì)水產(chǎn)動(dòng)物健康和生產(chǎn)性能,以及產(chǎn)品質(zhì)量的影響的嚴(yán)重性。霉菌毒素污染可降低魚(yú)及農(nóng)場(chǎng)飼養(yǎng)動(dòng)物的生長(zhǎng)率、飼料效率、繁殖性能及對(duì)傳染病的抵抗力,并能引起肝臟及其他器官的損傷(Engelhardt等,1989;Thiel等,1992;Lumbertdacha等,1995)。本文綜述了霉菌毒素對(duì)水產(chǎn)養(yǎng)殖危害的一些研究進(jìn)展和控制方法。
1 霉菌毒素的危害
盡管已知的霉菌毒素有幾百種,主要的霉菌毒素有黃曲霉毒素、玉米赤霉烯酮、單端孢霉烯族毒素、煙曲霉毒素、赭曲霉毒素A和麥角生物堿6大類(lèi)。根據(jù)其毒性和出現(xiàn)概率,對(duì)水產(chǎn)養(yǎng)殖最重要的霉菌毒素還是黃曲霉毒素。黃曲霉毒素是由黃曲霉和寄生曲霉產(chǎn)生的一類(lèi)毒性極強(qiáng)、可致突變和致癌的物質(zhì)(Deiner等,l987;Kurtzman等,1987)。產(chǎn)毒黃曲霉菌可產(chǎn)生黃曲霉毒素B1和B2,產(chǎn)毒寄生曲霉菌可產(chǎn)生黃曲霉毒素B1、B2、G1和G2(Cotty等,1994)。通常動(dòng)物中毒的后果表現(xiàn)為生長(zhǎng)緩慢、貧血、產(chǎn)生血液凝塊、淤血、肝臟及一些器官受損、免疫功能降低、死亡率增加。玉米、花生、樹(shù)生堅(jiān)果、棉籽和其他食物的黃曲霉毒素污染,一直就是一個(gè)世界性問(wèn)題。在全世界使用的很大一部分玉米是作為魚(yú)類(lèi)飼料的主要成分,據(jù)報(bào)道受污染后含有多達(dá)6 000μg/kg的黃曲霉毒素;ㄉ屎兔拮讶首钊菀资茳S曲霉毒素污染,棉籽和玉米在蟹和鯰魚(yú)中是常見(jiàn)的成分,而且占飼料配方中的25%~30%,因此黃曲霉毒素傳染到魚(yú)類(lèi)的可能性較大。20世紀(jì)50年代末,整個(gè)美國(guó)和歐洲養(yǎng)殖的虹鱒發(fā)生了肝癌,發(fā)現(xiàn)與日糧配方中使用了霉變的棉籽仁有關(guān)(Wales,1970)。目前越來(lái)越多的研究表明,霉菌毒素對(duì)水產(chǎn)養(yǎng)殖種類(lèi)的危害與陸生種類(lèi)相似。近幾年,很多的工作都是研究黃曲霉毒素對(duì)魚(yú)類(lèi)的危害,而僅有少量是研究霉菌毒素對(duì)其他種類(lèi)比如蝦類(lèi)的危害。
黃曲霉毒素B1對(duì)魚(yú)的生物學(xué)影響與飼料中毒素水平及魚(yú)的年齡和品種直接相關(guān)。有報(bào)道表明,不同魚(yú)類(lèi)對(duì)黃曲霉毒素(AFB)的敏感性差異很大(表1),魚(yú)類(lèi)對(duì)毒素的易感性依賴(lài)于其生長(zhǎng)環(huán)境的溫度,冷水魚(yú)類(lèi)對(duì)AFB1的易感性要低于暖水魚(yú)類(lèi)(Lovell,1989)。幼齡魚(yú)類(lèi)比成年魚(yú)更易感。虹鱒魚(yú)是對(duì)黃曲霉毒素最敏感的魚(yú)種之一(Hendricks,1994),海水和淡水養(yǎng)殖的虹鱒魚(yú)對(duì)AFB1都極為易感,因此有研究將虹鱒魚(yú)作為檢測(cè)環(huán)境致癌物的魚(yú)模型。50g重的虹鱒魚(yú)對(duì)黃曲霉毒素的半數(shù)致死量為500~1 000 μg/kg,其嚴(yán)重中毒的癥狀是:肝損壞、鰓變蒼白、紅細(xì)胞減少。而其他魚(yú)類(lèi),如河鲇魚(yú),只有很高劑量才有影響,相比較羅非魚(yú)對(duì)AFB1引起的生長(zhǎng)抑制更為敏感(Jantrarotai & Lovell,1990;Jantrarotai等,1990)。如羅非魚(yú)飼喂含0.2mg AFB/kg的日糧會(huì)導(dǎo)致16.7%死亡率(El-Banna等,1992),Nguyen等(2002)的研究結(jié)果顯示10mg AFB/kg日糧飼喂8周可導(dǎo)致羅非魚(yú)生長(zhǎng)率下降90%。Y.S. El-Sayed等(2009)發(fā)現(xiàn)海水鱸魚(yú)也表現(xiàn)出對(duì)AFB1的高度敏感,口服AFB1達(dá)96h的LC50為0.18mg/kg體重,急性中毒的魚(yú)只表現(xiàn)為運(yùn)動(dòng)遲緩,平衡喪失,腮骨迅速翕動(dòng),背部皮膚表面出血。通過(guò)每日給予0.018mg/kg體重的AFB1,42d試驗(yàn)結(jié)束時(shí),海水鱸魚(yú)的血清轉(zhuǎn)氨酶、堿性磷酸酶活性顯著升高,血漿蛋白含量明顯下降,且魚(yú)體肌肉組織中AFB1殘留高約5μg/kg。血液中谷草轉(zhuǎn)氨酶(AST)、谷丙轉(zhuǎn)氨酶(ALT)、堿性磷酸酶(ALP)活性增加,可能是由于肝、腎、心臟等器官壞死引起,是表現(xiàn)肝臟和腎臟損傷的重要指標(biāo)。因此長(zhǎng)期接觸低劑量AFB1將會(huì)導(dǎo)致海水鱸魚(yú)慢性中毒,導(dǎo)致動(dòng)物消化酶活性降低,飼料轉(zhuǎn)化率下降,從而引起動(dòng)物生產(chǎn)性能的下降。有報(bào)道給白斑魚(yú)每日飼喂50μg/kg的AFB1,30d后體內(nèi)也可檢測(cè)到5μg/kg的殘留,魚(yú)體中毒素殘留增加了黃曲霉毒素向人類(lèi)轉(zhuǎn)移的風(fēng)險(xiǎn)。不過(guò)蝦和羅非魚(yú)飼喂很高劑量的AFB1 60d未檢測(cè)到毒素殘留,這可能是由于AFB1在這些物種中的代謝途徑不同所導(dǎo)致。
* 96h測(cè)定值,其余為24h測(cè)定值。
鹽水蝦和淡水甲殼動(dòng)物24h內(nèi)對(duì)AFB1的半數(shù)致死濃度分別為14.0mg/L和1.0mg/L,對(duì)蝦對(duì)AFB1的半數(shù)致死量為100.5mg/kg(Reiss,1972)。AFB1可引起海水蝦生長(zhǎng)不良,消化率低下,生理機(jī)能紊亂,以及組織學(xué)病變,主要是肝胰臟組織(Lightner等,1982;Lightner等,1988;Bautista等,1994;Ostrowski-Meissner等,1995;Boonyaratpalin等,2001;Bintvihok等,2003)。菲律賓學(xué)者發(fā)現(xiàn)蝦飼料的霉菌毒素濃度在73.8μg/kg時(shí)蝦生長(zhǎng)緩慢,較容易得皮膚病,(甲殼動(dòng)物)肝胰腺的損傷還會(huì)引發(fā)其他病情。梁萌青等人(1996)在探討黃曲霉毒素對(duì)中國(guó)對(duì)蝦生長(zhǎng)的影響時(shí)發(fā)現(xiàn),飼料中黃曲霉毒素B1的含量分別為472.0μg/kg、78.7μg/kg時(shí),若以對(duì)照組為100,中國(guó)對(duì)蝦成活率均為55%,增重率分別為43.9%、45.4%,消化率依次為79.4%和83.2%。對(duì)蝦游泳緩慢,個(gè)別對(duì)蝦在水面游泳,很少抱食,離水后即亡,不過(guò)其體內(nèi)未檢測(cè)到黃曲霉毒素。泰國(guó)學(xué)者研究發(fā)現(xiàn)給草蝦分別飼喂含5,10,20μg/kg AFB1的飼糧,在7d和10d時(shí),草蝦體重分別降至初始重的46%和59%,肝胰腺也出現(xiàn)了損傷,AFB1可明顯影響草蝦的生長(zhǎng)性能。
其他霉菌毒素也可引起養(yǎng)殖魚(yú)類(lèi)的生產(chǎn)問(wèn)題,但實(shí)驗(yàn)濃度遠(yuǎn)遠(yuǎn)高于實(shí)際生產(chǎn)中飼料當(dāng)中的平均毒素濃度。研究表明可導(dǎo)致河鲇魚(yú)生長(zhǎng)抑制的煙曲霉毒素B1(FB1)最低濃度水平是20~40mg/kg,20mg FB1/kg飼喂2周會(huì)顯著降低增重,而羅非魚(yú)對(duì)FB1的敏感性則較低。河鲇魚(yú)小魚(yú)飼喂80mg FB1/kg時(shí),增重為對(duì)照組的50%,羅非魚(yú)飼喂70mg FB1/kg時(shí),增重為對(duì)照組的71%。河鲇魚(yú)和羅非魚(yú)均可耐受日糧FB1水平為150mg/kg,在320或720mg FB1/kg時(shí),才可觀察到魚(yú)的死亡。FB1單獨(dú)存在時(shí)(104mg/kg,24周)未能誘導(dǎo)虹鱒發(fā)生肝癌,但與AFB1同時(shí)存在時(shí),則可促進(jìn)肝癌的發(fā)生(David等,2001)。相比較甲殼動(dòng)物的敏感性要高很多,鹽水蝦24h內(nèi)對(duì)FB1的半數(shù)致死濃度為60μg/kg(Jiménez等,1997)。脫氧雪腐鐮刀菌烯醇簡(jiǎn)稱(chēng)DON,也就是常說(shuō)的嘔吐毒素,是由鐮刀霉菌代謝產(chǎn)生的。當(dāng)生長(zhǎng)期處在潮濕天氣時(shí),在小麥中DON是一種很重要的毒素。喂養(yǎng)虹鱒魚(yú)DON在0,1.0,2.0和5.0mg/kg濃度時(shí),將減緩魚(yú)類(lèi)生長(zhǎng)。當(dāng)喂養(yǎng)虹鱒魚(yú)的飼料濃度達(dá)到20mg DON/kg時(shí),會(huì)發(fā)生拒食現(xiàn)象。但是DON對(duì)其余水產(chǎn)生物的影響則較少。關(guān)于玉米赤霉烯酮(ZEA)對(duì)水產(chǎn)生物影響的研究資料也很少見(jiàn),Augustine等(1999)用虹鱒建立了一個(gè)模型用來(lái)評(píng)價(jià)ZEA及其代謝產(chǎn)物在體內(nèi)的類(lèi)雌激素效價(jià),這表明ZEA同樣會(huì)影響水生生物的生殖系統(tǒng)。但是喂養(yǎng)虹鱒和鮭魚(yú)ZEA在1.0和10.0mg/kg體重濃度時(shí),均未對(duì)動(dòng)物表現(xiàn)出明顯影響。赭曲霉毒素是主要由曲霉菌和青霉菌產(chǎn)生的毒素,它經(jīng)常危害魚(yú)類(lèi)的腎臟,而且當(dāng)其和其他毒素一起出現(xiàn)在飼料中,會(huì)加強(qiáng)其他毒素的危害。腹腔注射赭曲霉毒素A(OTA)對(duì)6月大虹鱒魚(yú)的急性毒素引起的半致死量是4.67mg/kg(Doster等,1972),赭曲霉毒素對(duì)虹鱒魚(yú)的危害有肝臟壞死,顏色變暗,腎臟腫大,死亡率變高等。河鲇魚(yú)飼喂2.0,4.0或8.0mg/kg OTA 8周時(shí),其生長(zhǎng)率分別下降35%,66%,90%;4.0或8.0mg/kg OTA時(shí),飼料轉(zhuǎn)化率顯著下降;8.0mg/kg OTA時(shí),可導(dǎo)致河鲇魚(yú)20%死亡。另外還觀察到肝胰臟對(duì)日糧OTA的敏感性比腎臟更高,這意味著肝胰臟可能是OTA毒性的靶器官。
另外,一些霉菌和細(xì)菌會(huì)破壞飼料中的營(yíng)養(yǎng)成分。比如,青霉菌屬的霉菌能從葉酸的蝶酸中分解出谷氨酸,引起葉酸的缺乏,這一直被懷疑可能是引起河鲇魚(yú)營(yíng)養(yǎng)性貧血的原因。
2 霉菌毒素的預(yù)防
一般來(lái)講在用于魚(yú)飼料的玉米和花生產(chǎn)品中,黃曲霉毒素的含量不能超過(guò)20μg/kg。由于用于魚(yú)飼料的其他農(nóng)產(chǎn)品的黃曲霉毒素允許含量還沒(méi)有規(guī)定,因此,水產(chǎn)飼料制造商應(yīng)該檢測(cè)所有的與真菌毒素有關(guān)的原料。在生產(chǎn)魚(yú)苗飼料時(shí),應(yīng)該避免使用哪怕是懷疑有微量黃曲霉毒素的原料,因?yàn)轸~(yú)苗的敏感性很高。控制收割后霉菌毒素污染的最佳方法是對(duì)飼料進(jìn)行科學(xué)的貯存和加工。另外對(duì)飼料進(jìn)行霉菌毒素分析、剔出受污染的飼料批次,對(duì)飼料進(jìn)行處理以減少霉菌的生長(zhǎng)、對(duì)受污染飼料進(jìn)行稀釋和處理從而降低霉菌毒素的濃度。一種被污染的飼料或其成分可能含有超過(guò)一種的霉菌毒素。許多研究報(bào)導(dǎo)指出,霉菌毒素具有協(xié)同作用,兩種毒素綜合起來(lái)的危害比單獨(dú)作用的危害大得多。加熱和;^(guò)程中的壓擠并不能除去足夠的毒素,尤其是黃曲霉毒素,它對(duì)熱非常穩(wěn)定,甚至在高溫和蒸汽下受熱也較穩(wěn)定。吸附劑有助于減小霉菌毒素的影響,目前市場(chǎng)上霉菌毒素吸附劑的種類(lèi)很多,吸附毒素效果的差別也很大,用戶(hù)在使用時(shí)應(yīng)該選擇一些廣譜高效并具有選擇性吸附功能的產(chǎn)品。脫霉素(Novasil)是至今全球唯一在學(xué)報(bào)刊物發(fā)表證實(shí)具有選擇性吸附特點(diǎn),即只吸附毒素,不吸附主要營(yíng)養(yǎng)物的代表產(chǎn)品,它可以選擇性的吸附飼料中的黃曲霉毒素,而不會(huì)干擾飼料中維生素A、 β-胡蘿卜素、磷等營(yíng)養(yǎng)物質(zhì)的吸收(Chung等,1990;Phillips等,1995)。研究發(fā)現(xiàn)飼料中添加脫霉素可保護(hù)錦鯉免受高劑量黃曲霉毒素B1(100μg/kg)的影響。
The English version
Mycotoxin is mold growth in grain or feed to produce secondary metabolites, is all kinds of plants and environmental factors related to the change of stress reaction or mold growth conditions. In aquaculture industry has become increasingly deep understanding of mycotoxin contamination hazards, both feed production enterprise and fish and shrimp farmers have realized the mycotoxin on aquatic animal health and production performance, and the seriousness of the quality of products. Mycotoxin contamination can reduce the growth rate of fish and farm animals, feed efficiency, reproductive performance and resistance to infectious diseases, and can lead to liver and other organ damage (Engelhardt said, etc., 1989; Thiel, etc., 1992; Lumbertdacha etc., 1995). Mycotoxin was reviewed in this paper some research progress about the danger of aquaculture and the control method. 1 the dangers of mycotoxin despite hundreds of mycotoxin known, main mycotoxins of aflatoxin, corn gibberellic ketene, single-ended spore aspergillus toxin alkene toxins, smoke, ochratoxin A 6 types and ergot alkaloids. According to its toxicity and the occurrence probability, the most important thing for aquaculture mycotoxin aflatoxin. Yellow aspergillus toxin is produced by aspergillus flavus and parasitic aspergillus kind of highly toxic, mutagenic and carcinogenic substances (Deiner, l987; Kurtzman, etc., 1987). Enterotoxigenic yellow aspergillus can produce aflatoxin B1 and B2, the toxin-producing parasitic aspergillus can produce aflatoxin B1, B2, G1 and G2 (Cotty etc., 1994). Consequences of animal poisoning is usually slow-growing, anemia, blood clots, blood, liver and some organ damage, reduced immune function and increased mortality. Corn, peanuts, tree nuts, seeds and other aflatoxin contamination of food, has always been a worldwide problem. In a large part of the world use corn as the main composition of fish feed, according to the report after contaminated contain as many as 6, 000 mu g/kg of aflatoxin. Peanut, and cottonseed most susceptible to aflatoxin contamination, cottonseed and corn is a common ingredient in the crab and catfish, and accounts for 25% ~ 30% of feed formulation, therefore aflatoxins are more likely to infect to fish. In the late 1950 s, the United States and Europe farmed steelhead liver cancer, found that Japanese food formula were used in the mould of cottonseed (Wales, 1970). Currently, more and more studies show that mycotoxin and terrestrial species are similar to the harm of aquaculture species. In recent years, a lot of work is to study the aspergillus flavus toxin harm to fish, and only a small amount is the study of the mold toxin harm to other species such as shrimp. Aflatoxin B1 and effects on fish biology toxin levels in feed and directly related to the age and varieties of fish. Reports have indicated that the sensitivity of different fish on aflatoxin (AFB) difference is very big (table 1), fish susceptibility to the toxin is dependent on its growing environment temperature, cold water fish susceptibility of AFB1 than warm water fish (Lovell, 1989). The young fish more susceptible than adult fish. Rainbow trout is one of the most sensitive species of aflatoxin (Hendricks, 1994), seawater and freshwater aquaculture of rainbow trout is extremely susceptible to AFB1, therefore studies the rainbow trout as testing fish model of environmental carcinogens. 50 g of rainbow trout median lethal dose of aflatoxin is 500 ~ 1 000 mu g/kg, its severe poisoning symptoms are: liver damage, gill pale, red blood cells. And other fish, such as river catfish, only high doses, compared with tilapia is more sensitive to growth inhibition caused by AFB1 (Jantrarotai & Lovell, 1990; Jantrarotai etc., 1990). Such as tilapia fed diet containing 0.2 AFB mg/kg can lead to a 16.7% mortality rate (El - Banna, etc., 1992), Nguyen, etc. (2002), the results showed that 10 mg AFB/kg diet feeding 8 weeks can lead to tilapia growth rate fell by 90%. Y.S. El - Sayed etc. (2009) found that the water of the sea bass also show that the sensitivity to the height of AFB1, oral AFB1 96 h LC50 is 0.18 mg/kg body weight, acute poisoning fish only show the bradykinesia, loss of balance, jawbone moved quickly, the back surface of the skin. By daily AFB1 of 0.018 mg/kg body weight, 42 d test at the end of the sea bass significantly increased serum aminotransferase, alkaline phosphatase activity of plasma protein content decreased obviously, and the fish muscle tissue of AFB1 residual high about 5 mu g/kg. Blood aspertate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) activity increased, may be due to the liver, kidney, heart and other organs caused necrosis, is an important index of liver and kidney damage. So long-term exposure to low doses of AFB1 will lead to chronic poisoning, sea bass results in the decrease of animal digestive enzyme activity, feed conversion rate decreased, causing decline in animal production performance. Reports to the grouper daily feeding 50 mu g/kg of AFB1, after 30 d can also be detected in the body 5 mu g/kg of residual, fish toxin residue increased the risk of aflatoxin to humans. But shrimp and tilapia fed high doses of AFB1 60 d toxins residue was detected, this may be due to AFB1 are different in the metabolic pathway of these species.
* 96 h measurements, the rest of the determination value of 24 h. Brine shrimp and freshwater crustaceans within 24 h of AFB1 median lethal concentration were 14.0 mg/L and 1.0 mg/L, shrimp of AFB1 median lethal dose of 100.5 mg/kg (Reiss, 1972). AFB1 can cause poor seawater shrimp growth, digestive rate is low, the physiological function disorder, and the histologic lesions, mainly liver pancreas tissue (Lightner etc., 1982; Lightner etc., 1988; Bautista, etc., 1994; Meissner Ostrowski, 1995; Boonyaratpalin etc., 2001; Bintvihok etc., 2003). The Philippines scholars found that the shrimp feed mycotoxins concentration in 73.8 mu g/kg, slow growth of the shrimp is prone to skin diseases, liver injury of the pancreas (crustaceans) will cause other illness. Meng-qing liang et al. (1996) on aflatoxin's influence on the growth of penaeus chinensis, content of aflatoxin B1 in feed were 472.0 mu g/kg, 78.7 mu g/kg, if in the control group of 100, the Chinese prawn survival rate is 55%, weight gain rate is 43.9%, 45.4% respectively, digestion rate of 79.4% and 83.2% in turn. Individual prawn shrimp swimming slowly, swimming in the water, rarely have food, away from the water after the death, but the body not detected aflatoxin. Thai scholars study found to shrimp fed respectively containing 5,10,20 mu g/kg of AFB1 fodder, 7 d and 10 d, shrimp weight dropped to 46% of the initial weight and 46% respectively, also appeared liver pancreas injury, AFB1 can significantly influence the growth performance of the shrimp. Other mycotoxin also can cause the production problems of farmed fish, but the concentration is much higher than in the actual production of feed the average concentration of toxin. Research shows that can lead to river catfish growth inhibition of smoke aspergillus toxin B1 (FB1) minimum levels is 20 ~ 40 mg/kg, 20 FB1 mg/kg feeding two weeks will be significantly reduced weight gain, while the susceptibility of FB1 to tilapia is low. River catfish fish feeding 80 FB1 mg/kg, the weight is 50% in the control group, tilapia fed 70 FB1 mg/kg, the weight gain of 71% in the control group. River catfish and tilapia diet FB1 can tolerance level of 150 mg/kg, in 320 or 720 mg FB1 / kg, can only be observed in the death of fish. FB1 exist alone (104 mg/kg, 24 weeks) failed to induce steelhead liver cancer, but with the AFB1 exist at the same time, can promote the occurrence of cancer of the liver (David, 2001). Compared with crustaceans of the sensitivity of much higher, brine shrimp within 24 h of FB1 median lethal concentration of 60 mu g/kg (Jimenez, etc., 1997). DNA snow sickle bacterium enol DON for short, is often said that vomiting toxins, is produced by metabolism of knife mold. When growing in wet weather, in wheat DON toxin is a kind of very important. Rainbow trout fed DON in 0,1.0, 2.0 and 5.0 mg/kg concentration, growth will slow fish. When feeding the rainbow trout feed concentration reaches 20 DON mg/kg, no phenomenon happens. But DON is less impact on the rest of the aquatic organisms. Gibberellic ketene on corn (ZEA) impact on the aquatic biological research data is also very rare, such as Augustine (1999) with rainbow trout has set up a model used to evaluate the class ZEA and its metabolites in the body estrogen potency, suggesting that the reproductive system of ZEA will also affect aquatic organisms. But the trout and salmon feed ZEA in 1.0 and 10.0 mg/kg body weight concentration, were not showed obvious influence to animals. Ochre and aspergillus toxin is the main toxins produced by aspergillus and penicillium, it often harm fish kidney, and when it appeared in the feed, together with other toxins will strengthen the dangers of other toxins. Intraperitoneal injection of ochratoxin A (OTA) caused by acute poison big rainbow trout in June half lethal dose is 4.67 mg/kg (Doster, etc., 1972), ochre and aspergillus toxin to the harm of rainbow trout have liver necrosis, dark, renal enlargement, mortality is higher. River catfish feeding 2.0, 4.0 or 4.0 mg/kg OTA at 8 weeks, the growth rate fell 35%, 66%, 90%; 4.0 or 8.0 mg/kg OTA, feed conversion rate dropped significantly. When 8.0 mg/kg OTA, but led to the deaths of 20% river catfish. Also observed liver pancreas of diet OTA sensitivity is higher than the kidney, which means that the liver pancreas may be OTA toxic target organs. In addition, some fungi and bacteria break down the ingredients in feed. Penicillium mold can, for example, from the adjustment of folic acid in the acid decomposition of glutamic acid, cause the lack of folic acid, which has long been suspected may be the cause of nutritional anemia walking fish river. 2 mycotoxin prevention in general in maize and peanut products used in fish feed, the content of aflatoxin should not exceed 20 mu g/kg. Because of other agricultural products for fish feed aflatoxin allows content have not rules, therefore, aquatic feed manufacturers should be testing all the materials related to the mycotoxin. In the production of fish feed, should avoid to use trace raw materials of aflatoxin, even if it is suspected because of the high sensitivity of larvae. Control mycotoxin contamination after the harvest is the best way to feed for scientific storage and processing. In addition to feed mycotoxin analysis, singling out the contaminated feed batch, to deal with feed in order to reduce the growth of mold, to dilute the contaminated feed and processing so as to reduce the concentration of the mycotoxin. A kind of contaminated feed or its components may contain more than one mycotoxin. Many research reports, mycotoxins have synergy, combination of two kinds of toxin harm is much bigger than the harm of separate function. In the process of heating and granulating extrusion is not enough to remove the toxins, especially aspergillus flavus toxin, it is very stable to heat, even under high temperature and steam heating is relatively stable. Adsorbent is helpful to reduce the influence of mycotoxin, currently on the market, many different kinds of mycotoxins adsorbent, adsorption poison effect difference is very big also, users should choose in the use of some broad spectrum efficient and selective adsorption function of the product. Take off the drug (Novasil) is still the only global publications in the journal confirmed that selective adsorption characteristics, namely only absorb toxins, not on behalf of the main nutrient absorption of products, it can feed of selective adsorption of aflatoxin, and not interfere with the feed in vitamin A, beta-carotene, phosphorus and other nutrients absorption (Chung, etc., 1990; such as Phillips, 1995). Study found that take off the drug is added to the feed, can protect the brocade carp from high doses of aflatoxin B1 (100 mu g/kg).
|